One Political Plaza - Home of politics
Home Active Topics Newest Pictures Search Login Register
Main
What is a battery?
Page <<first <prev 3 of 9 next> last>>
Apr 1, 2022 04:46:11   #
AuntiE Loc: 45th Least Free State
 
Tiptop789 wrote:
Yawn, more fun to poke holes in your erroneous information.


Well, as progressives tend to be anything but fun loving, I will be improving your lot in life.

Reply
Apr 1, 2022 07:20:49   #
River Reb Loc: MS Delta
 
AuntiE wrote:
What is a battery?'

I think Tesla said it best when they called it an Energy Storage System. That's important.

They do not make electricity – they store electricity produced elsewhere, primarily by coal, uranium, natural gas-powered plants, or diesel-fueled generators. So, to say an EV is a zero-emission vehicle is not at all valid.

Also, since forty percent of the electricity generated in the U.S. is from coal-fired plants, it follows that forty percent of the EVs on the road are coal-powered, do you see?

Einstein's formula, E=MC2, tells us it takes the same amount of energy to move a five-thousand-pound gasoline-driven automobile a mile as it does an electric one. The only question again is what produces the power? To reiterate, it does not come from the battery; the battery is only the storage device, like a gas tank in a car.

There are two orders of batteries, rechargeable, and single-use. The most common single-use batteries are A, AA, AAA, C, D. 9V, and lantern types. Those dry-cell species use zinc, manganese, lithium, silver oxide, or zinc and carbon to store electricity chemically. Please note they all contain toxic, heavy metals.

Rechargeable batteries only differ in their internal materials, usually lithium-ion, nickel-metal oxide, and nickel-cadmium. The United States uses three billion of these two battery types a year, and most are not recycled; they end up in landfills. California is the only state which requires all batteries be recycled. If you throw your small, used batteries in the trash, here is what happens to them.

All batteries are self-discharging. That means even when not in use, they leak tiny amounts of energy. You have likely ruined a flashlight or two from an old, ruptured battery. When a battery runs down and can no longer power a toy or light, you think of it as dead; well, it is not. It continues to leak small amounts of electricity. As the chemicals inside it run out, pressure builds inside the battery's metal casing, and eventually, it cracks. The metals left inside then ooze out. The ooze in your ruined flashlight is toxic, and so is the ooze that will inevitably leak from every battery in a landfill. All batteries eventually rupture; it just takes rechargeable batteries longer to end up in the landfill.

In addition to dry cell batteries, there are also wet cell ones used in automobiles, boats, and motorcycles. The good thing about those is, ninety percent of them are recycled. Unfortunately, we do not yet know how to recycle single-use ones properly.

But that is not half of it. For those of you excited about electric cars and a green revolution, I want you to take a closer look at batteries and also windmills and solar panels. These three technologies share what we call environmentally destructive embedded costs.

Everything manufactured has two costs associated with it, embedded costs and operating costs. I will explain embedded costs using a can of baked beans as my subject.

In this scenario, baked beans are on sale, so you jump in your car and head for the grocery store. Sure enough, there they are on the shelf for $1.75 a can. As you head to the checkout, you begin to think about the embedded costs in the can of beans.

The first cost is the diesel fuel the farmer used to plow the field, till the ground, harvest the beans, and transport them to the food processor. Not only is his diesel fuel an embedded cost, so are the costs to build the tractors, combines, and trucks. In addition, the farmer might use a nitrogen fertilizer made from natural gas.

Next is the energy costs of cooking the beans, heating the building, transporting the workers, and paying for the vast amounts of electricity used to run the plant. The steel can holding the beans is also an embedded cost. Making the steel can requires mining taconite, shipping it by boat, extracting the iron, placing it in a coal-fired blast furnace, and adding carbon. Then it's back on another truck to take the beans to the grocery store. Finally, add in the cost of the gasoline for your car.

A typical EV battery weighs one thousand pounds, about the size of a travel trunk. It contains twenty-five pounds of lithium, sixty pounds of nickel, 44 pounds of manganese, 30 pounds cobalt, 200 pounds of copper, and 400 pounds of aluminum, steel, and plastic. Inside are over 6,000 individual lithium-ion cells.

It should concern you that all those toxic components come from mining. For instance, to manufacture each EV auto battery, you must process 25,000 pounds of brine for the lithium, 30,000 pounds of ore for the cobalt, 5,000 pounds of ore for the nickel, and 25,000 pounds of ore for copper. All told, you dig up 500,000 pounds of the earth's crust for just one battery."

Sixty-eight percent of the world's cobalt, a significant part of a battery, comes from the Congo. Their mines have no pollution controls, and they employ children who die from handling this toxic material.

Should we factor in these diseased kids as part of the cost of driving an electric car?"

I'd like to leave you with these thoughts. California is building the largest battery in the world near San Francisco, and they intend to power it from solar panels and windmills. They claim this is the ultimate in being 'green,' but it is not! This construction project is creating an environmental disaster. Let me tell you why.

The main problem with solar arrays is the chemicals needed to process silicate into the silicon used in the panels. To make pure enough silicon requires processing it with hydrochloric acid, sulfuric acid, nitric acid, hydrogen fluoride, trichloroethane, and acetone. In addition, they also need gallium, arsenide, copper-indium-gallium- diselenide, and cadmium-telluride, which also are highly toxic.

Silicone dust is a hazard to the workers, and the panels cannot be recycled.

Windmills are the ultimate in embedded costs and environmental destruction. Each weighs 1688 tons (the equivalent of 23 houses) and contains 1300 tons of concrete, 295 tons of steel, 48 tons of iron, 24 tons of fiberglass, and the hard to extract rare earths neodymium, praseodymium, and dysprosium. Each blade weighs 81,000 pounds and will last 15 to 20 years, at which time it must be replaced. We cannot recycle used blades. Sadly, both solar arrays and windmills kill birds, bats, sea life, and migratory insects.

There may be a place for these technologies, but you must look beyond the myth of zero emissions. I predict EVs and windmills will be abandoned once the embedded environmental costs of making and replacing them become apparent. "Going Green" may sound like the Utopian ideal and are easily espoused, catchy buzzwords, but when you look at the hidden and embedded costs realistically with an open mind, you can see that Going Green is more destructive to the Earth's environment than meets the eye, for sure.
b What is a battery?' /b br br I think Tesla sa... (show quote)


Excellent. The lefty, "green new deal", wokies will still scream for e-cars. You can't tell them anything.

Reply
Apr 1, 2022 08:06:15   #
guzzimaestro
 
Michael Rich wrote:
Yo...mr perpetually clueless.

DDT was banned in America in 1972.

Lead shot is illegal to hunt birds with and has been for years.


Yes, and we use steel fishing weights now

Reply
 
 
Apr 1, 2022 08:59:23   #
Tiptop789 Loc: State of Denial
 
AuntiE wrote:
Well, as progressives tend to be anything but fun loving, I will be improving your lot in life.


Thanks, it's always a pleasure conversing with you. You provide thought provoking information. I hope you're getting more sleep these days

Reply
Apr 1, 2022 10:19:25   #
Michael Rich Loc: Lapine Oregon
 
guzzimaestro wrote:
Yes, and we use steel fishing weights now


Here in Oregon we can still use lead.

Reply
Apr 1, 2022 10:48:56   #
BigJim
 
Good post, although E=MC2 has nothing to do with conservation of energy alone, just mass energy conversioon in nuclear reactions.

The DDT ban has killed far more people (From malaria) than it has saved raptors. And which are more valuable, people or eagles?

Reply
Apr 1, 2022 12:32:31   #
Tiptop789 Loc: State of Denial
 
AuntiE wrote:
It was originally built in 1971. Compared to current technology, yes it is.


What would you consider new technology? I'm aware of the efforts by Bill Gates and others plus the modular reactors. Not sure if this is what you mean.

Reply
 
 
Apr 1, 2022 12:51:23   #
eagleye13 Loc: Fl
 
AuntiE wrote:
What is a battery?'

I think Tesla said it best when they called it an Energy Storage System. That's important.

They do not make electricity – they store electricity produced elsewhere, primarily by coal, uranium, natural gas-powered plants, or diesel-fueled generators. So, to say an EV is a zero-emission vehicle is not at all valid.

Also, since forty percent of the electricity generated in the U.S. is from coal-fired plants, it follows that forty percent of the EVs on the road are coal-powered, do you see?

Einstein's formula, E=MC2, tells us it takes the same amount of energy to move a five-thousand-pound gasoline-driven automobile a mile as it does an electric one. The only question again is what produces the power? To reiterate, it does not come from the battery; the battery is only the storage device, like a gas tank in a car.

There are two orders of batteries, rechargeable, and single-use. The most common single-use batteries are A, AA, AAA, C, D. 9V, and lantern types. Those dry-cell species use zinc, manganese, lithium, silver oxide, or zinc and carbon to store electricity chemically. Please note they all contain toxic, heavy metals.

Rechargeable batteries only differ in their internal materials, usually lithium-ion, nickel-metal oxide, and nickel-cadmium. The United States uses three billion of these two battery types a year, and most are not recycled; they end up in landfills. California is the only state which requires all batteries be recycled. If you throw your small, used batteries in the trash, here is what happens to them.

All batteries are self-discharging. That means even when not in use, they leak tiny amounts of energy. You have likely ruined a flashlight or two from an old, ruptured battery. When a battery runs down and can no longer power a toy or light, you think of it as dead; well, it is not. It continues to leak small amounts of electricity. As the chemicals inside it run out, pressure builds inside the battery's metal casing, and eventually, it cracks. The metals left inside then ooze out. The ooze in your ruined flashlight is toxic, and so is the ooze that will inevitably leak from every battery in a landfill. All batteries eventually rupture; it just takes rechargeable batteries longer to end up in the landfill.

In addition to dry cell batteries, there are also wet cell ones used in automobiles, boats, and motorcycles. The good thing about those is, ninety percent of them are recycled. Unfortunately, we do not yet know how to recycle single-use ones properly.

But that is not half of it. For those of you excited about electric cars and a green revolution, I want you to take a closer look at batteries and also windmills and solar panels. These three technologies share what we call environmentally destructive embedded costs.

Everything manufactured has two costs associated with it, embedded costs and operating costs. I will explain embedded costs using a can of baked beans as my subject.

In this scenario, baked beans are on sale, so you jump in your car and head for the grocery store. Sure enough, there they are on the shelf for $1.75 a can. As you head to the checkout, you begin to think about the embedded costs in the can of beans.

The first cost is the diesel fuel the farmer used to plow the field, till the ground, harvest the beans, and transport them to the food processor. Not only is his diesel fuel an embedded cost, so are the costs to build the tractors, combines, and trucks. In addition, the farmer might use a nitrogen fertilizer made from natural gas.

Next is the energy costs of cooking the beans, heating the building, transporting the workers, and paying for the vast amounts of electricity used to run the plant. The steel can holding the beans is also an embedded cost. Making the steel can requires mining taconite, shipping it by boat, extracting the iron, placing it in a coal-fired blast furnace, and adding carbon. Then it's back on another truck to take the beans to the grocery store. Finally, add in the cost of the gasoline for your car.

A typical EV battery weighs one thousand pounds, about the size of a travel trunk. It contains twenty-five pounds of lithium, sixty pounds of nickel, 44 pounds of manganese, 30 pounds cobalt, 200 pounds of copper, and 400 pounds of aluminum, steel, and plastic. Inside are over 6,000 individual lithium-ion cells.

It should concern you that all those toxic components come from mining. For instance, to manufacture each EV auto battery, you must process 25,000 pounds of brine for the lithium, 30,000 pounds of ore for the cobalt, 5,000 pounds of ore for the nickel, and 25,000 pounds of ore for copper. All told, you dig up 500,000 pounds of the earth's crust for just one battery."

Sixty-eight percent of the world's cobalt, a significant part of a battery, comes from the Congo. Their mines have no pollution controls, and they employ children who die from handling this toxic material.

Should we factor in these diseased kids as part of the cost of driving an electric car?"

I'd like to leave you with these thoughts. California is building the largest battery in the world near San Francisco, and they intend to power it from solar panels and windmills. They claim this is the ultimate in being 'green,' but it is not! This construction project is creating an environmental disaster. Let me tell you why.

The main problem with solar arrays is the chemicals needed to process silicate into the silicon used in the panels. To make pure enough silicon requires processing it with hydrochloric acid, sulfuric acid, nitric acid, hydrogen fluoride, trichloroethane, and acetone. In addition, they also need gallium, arsenide, copper-indium-gallium- diselenide, and cadmium-telluride, which also are highly toxic.

Silicone dust is a hazard to the workers, and the panels cannot be recycled.

Windmills are the ultimate in embedded costs and environmental destruction. Each weighs 1688 tons (the equivalent of 23 houses) and contains 1300 tons of concrete, 295 tons of steel, 48 tons of iron, 24 tons of fiberglass, and the hard to extract rare earths neodymium, praseodymium, and dysprosium. Each blade weighs 81,000 pounds and will last 15 to 20 years, at which time it must be replaced. We cannot recycle used blades. Sadly, both solar arrays and windmills kill birds, bats, sea life, and migratory insects.

There may be a place for these technologies, but you must look beyond the myth of zero emissions. I predict EVs and windmills will be abandoned once the embedded environmental costs of making and replacing them become apparent. "Going Green" may sound like the Utopian ideal and are easily espoused, catchy buzzwords, but when you look at the hidden and embedded costs realistically with an open mind, you can see that Going Green is more destructive to the Earth's environment than meets the eye, for sure.
b What is a battery?' /b br br I think Tesla sa... (show quote)


Thanks. Quite an eye opener.
The future is not looking very Green.
Good thing this Age is coming to a close.

Reply
Apr 1, 2022 12:55:07   #
nonalien1 Loc: Mojave Desert
 
Birdmam wrote:
Nuclear the cleanest energy on this planet


Nuclear power plants are used for uranium enrichenment. That is there real purpose .If they wanted a clean nuclear plant they would use molten salt instead. Look it up clean and very little harmful radiation.

Reply
Apr 1, 2022 12:56:01   #
eagleye13 Loc: Fl
 
Tiptop789 wrote:
If you wish to post erroneous information, go ahead & help yourself. But coal only produces 20%.


Tiptop789; AuntiE covered where the other 80% comes from.
Now go back and read; then get back with us.

Reply
Apr 1, 2022 12:59:42   #
nonalien1 Loc: Mojave Desert
 
Tiptop789 wrote:
You should check things a little before you post them. In 2020, coal sound for little greater than 20%. The total for all fossil fuels was about 60%, renewable about 20%, nuclear about 20%. Also, you might want to read a little about lead/acid batteries. They produce electricity by chemical reaction.


Read the fifth paragraph it mentions chemical reaction. But some people just live to pick apart posts that are better then the ones they post themselves. Yup your tip top at that

Reply
 
 
Apr 1, 2022 13:05:32   #
eagleye13 Loc: Fl
 
nonalien1 wrote:
Read the fifth paragraph it mentions chemical reaction. But some people just live to pick apart posts that are better then the ones they post themselves. Yup your tip top at that


Tippy is best at converting alcohol and solids to methane.
Tippy does her part for Global Warming.

Reply
Apr 1, 2022 13:09:22   #
Bevvy
 
AuntiE wrote:
What is a battery?'

I think Tesla said it best when they called it an Energy Storage System. That's important.

They do not make electricity – they store electricity produced elsewhere, primarily by coal, uranium, natural gas-powered plants, or diesel-fueled generators. So, to say an EV is a zero-emission vehicle is not at all valid.

Also, since forty percent of the electricity generated in the U.S. is from coal-fired plants, it follows that forty percent of the EVs on the road are coal-powered, do you see?

Einstein's formula, E=MC2, tells us it takes the same amount of energy to move a five-thousand-pound gasoline-driven automobile a mile as it does an electric one. The only question again is what produces the power? To reiterate, it does not come from the battery; the battery is only the storage device, like a gas tank in a car.

There are two orders of batteries, rechargeable, and single-use. The most common single-use batteries are A, AA, AAA, C, D. 9V, and lantern types. Those dry-cell species use zinc, manganese, lithium, silver oxide, or zinc and carbon to store electricity chemically. Please note they all contain toxic, heavy metals.

Rechargeable batteries only differ in their internal materials, usually lithium-ion, nickel-metal oxide, and nickel-cadmium. The United States uses three billion of these two battery types a year, and most are not recycled; they end up in landfills. California is the only state which requires all batteries be recycled. If you throw your small, used batteries in the trash, here is what happens to them.

All batteries are self-discharging. That means even when not in use, they leak tiny amounts of energy. You have likely ruined a flashlight or two from an old, ruptured battery. When a battery runs down and can no longer power a toy or light, you think of it as dead; well, it is not. It continues to leak small amounts of electricity. As the chemicals inside it run out, pressure builds inside the battery's metal casing, and eventually, it cracks. The metals left inside then ooze out. The ooze in your ruined flashlight is toxic, and so is the ooze that will inevitably leak from every battery in a landfill. All batteries eventually rupture; it just takes rechargeable batteries longer to end up in the landfill.

In addition to dry cell batteries, there are also wet cell ones used in automobiles, boats, and motorcycles. The good thing about those is, ninety percent of them are recycled. Unfortunately, we do not yet know how to recycle single-use ones properly.

But that is not half of it. For those of you excited about electric cars and a green revolution, I want you to take a closer look at batteries and also windmills and solar panels. These three technologies share what we call environmentally destructive embedded costs.

Everything manufactured has two costs associated with it, embedded costs and operating costs. I will explain embedded costs using a can of baked beans as my subject.

In this scenario, baked beans are on sale, so you jump in your car and head for the grocery store. Sure enough, there they are on the shelf for $1.75 a can. As you head to the checkout, you begin to think about the embedded costs in the can of beans.

The first cost is the diesel fuel the farmer used to plow the field, till the ground, harvest the beans, and transport them to the food processor. Not only is his diesel fuel an embedded cost, so are the costs to build the tractors, combines, and trucks. In addition, the farmer might use a nitrogen fertilizer made from natural gas.

Next is the energy costs of cooking the beans, heating the building, transporting the workers, and paying for the vast amounts of electricity used to run the plant. The steel can holding the beans is also an embedded cost. Making the steel can requires mining taconite, shipping it by boat, extracting the iron, placing it in a coal-fired blast furnace, and adding carbon. Then it's back on another truck to take the beans to the grocery store. Finally, add in the cost of the gasoline for your car.

A typical EV battery weighs one thousand pounds, about the size of a travel trunk. It contains twenty-five pounds of lithium, sixty pounds of nickel, 44 pounds of manganese, 30 pounds cobalt, 200 pounds of copper, and 400 pounds of aluminum, steel, and plastic. Inside are over 6,000 individual lithium-ion cells.

It should concern you that all those toxic components come from mining. For instance, to manufacture each EV auto battery, you must process 25,000 pounds of brine for the lithium, 30,000 pounds of ore for the cobalt, 5,000 pounds of ore for the nickel, and 25,000 pounds of ore for copper. All told, you dig up 500,000 pounds of the earth's crust for just one battery."

Sixty-eight percent of the world's cobalt, a significant part of a battery, comes from the Congo. Their mines have no pollution controls, and they employ children who die from handling this toxic material.

Should we factor in these diseased kids as part of the cost of driving an electric car?"

I'd like to leave you with these thoughts. California is building the largest battery in the world near San Francisco, and they intend to power it from solar panels and windmills. They claim this is the ultimate in being 'green,' but it is not! This construction project is creating an environmental disaster. Let me tell you why.

The main problem with solar arrays is the chemicals needed to process silicate into the silicon used in the panels. To make pure enough silicon requires processing it with hydrochloric acid, sulfuric acid, nitric acid, hydrogen fluoride, trichloroethane, and acetone. In addition, they also need gallium, arsenide, copper-indium-gallium- diselenide, and cadmium-telluride, which also are highly toxic.

Silicone dust is a hazard to the workers, and the panels cannot be recycled.

Windmills are the ultimate in embedded costs and environmental destruction. Each weighs 1688 tons (the equivalent of 23 houses) and contains 1300 tons of concrete, 295 tons of steel, 48 tons of iron, 24 tons of fiberglass, and the hard to extract rare earths neodymium, praseodymium, and dysprosium. Each blade weighs 81,000 pounds and will last 15 to 20 years, at which time it must be replaced. We cannot recycle used blades. Sadly, both solar arrays and windmills kill birds, bats, sea life, and migratory insects.

There may be a place for these technologies, but you must look beyond the myth of zero emissions. I predict EVs and windmills will be abandoned once the embedded environmental costs of making and replacing them become apparent. "Going Green" may sound like the Utopian ideal and are easily espoused, catchy buzzwords, but when you look at the hidden and embedded costs realistically with an open mind, you can see that Going Green is more destructive to the Earth's environment than meets the eye, for sure.
b What is a battery?' /b br br I think Tesla sa... (show quote)


Wish you could convince Mr Thermophobe of that

Reply
Apr 1, 2022 13:25:12   #
RickyDCUSMC
 
To AuntiE great post, I have been telling people about the down fall of Solar and Wind for years. For Woodguru and Tip Top 789 as I have stated before, research and learn before you stick your foot in your mouth. For birdman and the rest, the "cleanest" energy source is hydroelectric and even it has waste bi-products and damage. There are dams all over the world and they all have issues with wild life damage and are working toward better marine life protection. According to the EPA and the US energy commission wind and solar only account for 3% of energy production, I have no idea where Tip Top 789 received information that they were 20%.

As AuntiE explained there is no such thing as "clean energy". There is a company that has started shredding old wind mill blades to be used in a concrete manufacturing facility to make new concrete. (I believe burning it) which adds to CO2 and other emissions. GE Renewable Energy signed an agreement with Veolia last December for this venture. Solar cells at this time cannot be recycled or repurposed.

Also as for all E=MC2 means Energy (E) equals Mass (M) times Velocity (C) squared or C x 2. This is relative to ALL energy calculations and is simply the formula to calculate energy harnessed by mass of an atom, times it's velocity. We DO NOT create energy nor does anyone else, we simply move it from one form to another. I know all this from education and 50 years of practical experience. AAES, BSCE, MBA

Reply
Apr 1, 2022 13:32:39   #
eagleye13 Loc: Fl
 
RickyDCUSMC wrote:
To AuntiE great post, I have been telling people about the down fall of Solar and Wind for years. For Woodguru and Tip Top 789 as I have stated before, research and learn before you stick your foot in your mouth. For birdman and the rest, the "cleanest" energy source is hydroelectric and even it has waste bi-products and damage. There are dams all over the world and they all have issues with wild life damage and are working toward better marine life protection. According to the EPA and the US energy commission wind and solar only account for 3% of energy production, I have no idea where Tip Top 789 received information that they were 20%.

As AuntiE explained there is no such thing as "clean energy". There is a company that has started shredding old wind mill blades to be used in a concrete manufacturing facility to make new concrete. (I believe burning it) which adds to CO2 and other emissions. GE Renewable Energy signed an agreement with Veolia last December for this venture. Solar cells at this time cannot be recycled or repurposed.

Also as for all E=MC2 means Energy (E) equals Mass (M) times Velocity (C) squared or C x 2. This is relative to ALL energy calculations and is simply the formula to calculate energy harnessed by mass of an atom, times it's velocity. We DO NOT create energy nor does anyone else, we simply move it from one form to another. I know all this from education and 50 years of practical experience. AAES, BSCE, MBA
To AuntiE great post, I have been telling people a... (show quote)


Thanks for splainin it in fairly simple terms.

Reply
Page <<first <prev 3 of 9 next> last>>
If you want to reply, then register here. Registration is free and your account is created instantly, so you can post right away.
Main
OnePoliticalPlaza.com - Forum
Copyright 2012-2024 IDF International Technologies, Inc.